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Dyson hae shown that the evaluation of the 5-matrix for

quantum eleotrodynamioa can be reduced Ta the problem of eval-

uating certain quantities. 51F. DIF and 1-,. . By making use

of a formula relating the T-produot of an operator with its

corresponding N-product, integro-differential equations for

SOF and DIF are obtained. These equations are identical In

form with those given by Sohwinger for his Greents-functione

and henoe It is concluded that the two fortliaoms are equivalent.

In addition It is shown that all of the quantities Introduccd

by Sohwinger can be expressed in terme of a single quant ty,

Svao, the vacuum expectation value of the 8-matrs.. The ro

normalization problem Is not disous3ed.



I. INTRODU(TICN AUD RMVIEW

In a recent work', Sohwinger has proposed a theory of

Green's functions which appears to be applicable to many of the

problems of quantum eleotrodynamice and similar theories. However,

since his theory is based on his own formali c of quantized fields2 ,

It Is not Immediately evident which connection existe between his

results and those of conventional field theories. It Is with

this relationship that the present paper will deal. Specifically

we will show how the results of Schwinger's theory can be derived
a 4

from Dyson's theory of the S-matrix It Is hoped that such a

demonstration will serve two purposes; first, to make Schwingertc

results readily available in terms of an already familiar formalsm,

and second, to afford a set of rules whereby one may calculate

directly from S-matrix theory the various Green's-functions Introduced

by Schwinger.

In the work to follow, we shall make use of many of the

results of 3mmatrix theory and hence, for the sake of convenience,

we will conclude this section by enumerating them. In the

Interaction representation, the state vector " of the

system, consisting of electromagnetic and electron] positron fields

In interaction, satisfies the equation

6toJ1^I6 W 1- 7 (X)

I J. Schwin esr, Proc. N.A.8..a 462 (1951).
2 j. Sohwinger Phys. Rev. JU. 614 (19bl).

For an excellent summary and bibliography, see F. J. Dysons Phys.
Rev. no 486 and 1?36 (1949).

4 For an Alternate treatment see R. Utlyama, 8. Bunakawa and
T. Imamura, Prog. Theor. Phy. 8, 77 (1952).



where(,.( C ) Is the Interaction Hamiltonian density i given by 5)

Here JO(x) Is the field current, which for convenienoe we write as

whereas J,,(x) is some arbitrarily given external currents.

In what follows, we will be mainly interested in that operavor

8, the "so-called* - atrix, which transforms a state of the system

at t--oo into the corresponding state at t 2 +o 0 Feynman ?

has shown that S can be written in the form

T Te f-iJ drf cVJC (x)/ T[~ 2
-

0

The T-produot appearing In Zq. (1) and first Introduced by Wick 8

is defined by;

T(A'v'"Z) = 6pXY .. \/

the factors U, VO, ... being arranged in chronological order In the

ordinary product on the right. By chronological order, we mean

that if two operators in the T-product of Eq. (2) correspond to

points ceparate by either a time-like or a zero interval, then

in the ordinary product, that operator operates first which corresponds

to the earlier time. The sign factor 6 p is the signature, t 1,

of the permutation (between left-hand side and right-hand side of

Xq. (1) of the electron-positron cprators only.

Throughout this paper we shall employ Sohwifners notation and
use units where" fv 1, c% 0

6 The interaction Hamiltonian employed here differs from that em-
ployed by Sohwin~er in that we dispense with the external
spinor fields(x) and ?) (x). Since these quantities were
introduced y Sohwinger as a mathemastical convenience and
are eventuall y set equal to zero the results obtained here
will be equivalent to those obtlned by Sohwinger.
F "". Feynmen fy. Rev..W 1981) 108.

G. C. Wick, PVys. Rev. 80 6190), MCB



I. THi; ORDUING O1LHATORS

Several methods,3 7 08 have been given for actually evaluating

the matrix elements of a T-product such as apiuear in Eq. (1). All

of these methods easentialLy Involve the transformation of the To

product Into an V-produot, where the N-product Is defined by.

N(Lv-- Z) = 6pxY.. w

the ordinary product on the right containing the same factors U,

V9 ... ordered In such a manner that all creation operators stand

to the left of all destruction operators. In this form, the matrix

elements of any T-produot can be readily calculated. In this seo.

Zion we will de Ive the fundamental expression (711 ). giving the

relation between an arbitrary T-product of electromagnetic and

electron-positron field operators and Its corresponding N-product.

We shall treat firot the case of a T-produot which Is a

functional only of the electromagnetic field operator A Jx). In

order to Introduce creation and destruction operators Into the

theory, we decompose A,(x) Into two parts according to g

Am.(X) - A, (x) *A, (x)

where A,* (x) contains only photon destruction operators, while A:(x)

contains only photon creation operators. These auxiliary fields

satisfy the following commutation relations:

iAZ(x), .,vrjq 4 dV(0r (A-A*)- L) (A.3X)A ) Av(x'))J AAAb)-(A)J 0

For a detalled discussion of this method of deooposition, see
J. awlnge r, Phys. Rev. 2 (1949), 851.



where the only property of the D funotions whioh we @hall need Is

that

D(R)
- r

and

satiflee

IDF(x) 2 &(X)

With the help of Eq. (3 -6) , we shall now prove the follow-

Ing statement: the N-product corresponding to a given T-product

can be obtained b7 substituting for every field operator A ,(x)

the quantity A'M(x) givon bylo

A (xi A A.(x + f A C 0 .(A- ") (7)

in the T-produot, considered now as an ordinary o-number functional

of the A^(x), and performing the Indicated differentiitions. The

resulting expression is then to be considered as an N-product, which,

in fa t. is equivalent to the original T-product. The statemient

10 The functional derivatives / are defined through the
equation

-EA ox) dA4j

Strictly speaking this definition Is meaningless since the quwnti.-
ties ap earing therein are operators which do not commute with
each other. We give meaning to the squation by assuming that the
6Ad.x) are c-numbers. When so defined, the functional derivatives
have the property that

_,e I . o



Is of course trv ally true when the Tproduct to be reordered le

just AA (x) Itself. To prove it for" the more general oase, let

us proceed by assuming that It Is true for some T-product, T L,(4)],

I.e., that
T

Then, If we can prove It for T IA.() j )] , we can oonolude, by

induction, that the above mentioned statement Is indeed valid.

This last assertion follows from the fact Zhat every operator

funotional can be e.reaeed as a functional power series in the

AA(x). To proceed with the proof, let us assume that the value of

x lies somewhere between the times to which the operators in

7(A) oorrespond. We exprese thic by the equation

7t1A.M(x)] A A A x A

or equivalently, by

L A, x) A) X (A) {A;(Y +Am' Ox) Y(A)

where

In order to convert Eq. (9) Into an N1produot we must comoute

A-(X) through X and A (x) through Y. This can be done by wM:ng

use of the commutation relations (J) and yields

However, because of the nature of I (") and ,' (x) and becaue

all times In Y precede x which in turn proceeds all times In X,

we can rewrite this equation as



"T[A,,(,,) 9"f(A)] ,K) ,,xY x,, (x,)

A' DA X,, z0 + ,

Upon substitution from Eq. (8) Into Eq. (10) we obtain

T [A, =J4 0 Aq(x-) (A f~ N[79~D (AvA A(A')J (II
JA,,. (,K)),T7 ;

Since now the quantities A'1 (x) and A*.(x) appear in ?(A) only

In the combination A' (x)' A. x), we note that

A__. A: (A) A (x)
and

N~ N

Therefore, Eq, (. U becomes

, A~ N f AA ()-A .)

Finally, remembering the detrfinr on of t'(x), we have

,[.YA., (,K

: N LA ,' ( .)

which was to be proved.

we can reformulate this result by noting that Eq. ( c7) an be

rewritten ln the forn

A .(Y,) e AA,,.. We "-



where

AYAM,(xj A3A,(x.)(/)

as can readily be verified by direot caloulation. Therefore, if

7L() Nc:W]('

then I, Is a1so true that

7FL-.+(A)] NCe~ -05(A) (2I.&
In particular, i f we are Interested only in the mnatrix elemuents of

T['('(A) we *an disregard the factor' L s einoe there Is nothing

for It to operate on, and write finally

In what follows, we shall refer to L\ as the photon ordering operator.

We can also derive an expression for an electron-ppcoltron

ordering operator. In order to do so we must decompose the electron-

positron operator according to

where u 6a ur ) destroys (creates) electrons, and y (vwf y')

destroys (creates) positrons 11 . For our purposes, we shall need

the following table of antioommutators:

with all other possible antioommutators vanishing. The Feynman

kernal function 8$.p (z) Is defined as

11 We represent the positrons by *negative.energy electron wave
functions and not by the oharge-conjugate tunctions.



and satisfies

(a') S4 (X z6.w 6 (x) (Os)
where

(a) (. 'a l ' 6/~ =cA M (/6)

We Gan, in complete analogy with the method Used to arrive

at Jq. (7-), derive a similar set of expresoions for the oleastron-

positron operators. We will not repeat the details of the proof,

but simply assert that for any functional C

T &Y (y NLX[vY)
where

: 3~(x's-fdx ~(17b)

Now, however, due to the fact that the oleotron..poaitron operators

anti-commute with each other, we must give a slightly different

meaning to the functional derivative as employed In Eqs. (17(4th )

A moments consideration shows that the correct definition is, given

by the following:

fD~IA ) ZIs .') 0 =0k, ~ *~O"

L_, ~ :

1;*d 0'J 6, (K)cV)



from which it imiaediately follows that

~ s0

As befor, we can Introduce an ordering operator -- defined by

C, X K A. '.(A) S No A9;e (A')
and write, In place of .qe. ( .. ,-.;4,17a,b

-P,,' (X) e 30 W e

and

'(3;,= e 6%) e"I  (19 b,)

Hence,

and again. if we are Interested only In the matrix elements of

LX(., ) we can write

<N[eJJ~(o)] (21v)

Upon combining the results contained In Eqe. (20), which we

can do since the two fields commute, we obtain the equation link.

Ing a given T-product to Its corresponding N-produot9 namely1 2

As we hall see later on, this result will greatly simplify our

work In treating the various Green' s-functions to be Introduced.

Zn pas ing, it is Interesting to note that It Is possible

to derive from iq. (2.I)s the moe o 'onventional rules for the

12 So Hon gPo. Theor. Phys.,_2o. 878 (1962) has obtained a
silar formula but only for the speoal case where S
Is the 8-matnix telf. We have developed Sq. (1) since we
w.l need It to treat more general forms of, .



transformation of a T-produot Into its corresponding N-produot'3 8 ,

For the sake of simplicity, we will carry out the demonstration

only for the electromagnetic field* and leave the case of the

electroSn.-positron field to the Interested reader. We shall first

state the rules whereby the transformation can be efreoted. In

ay T-produot of the AA(x) we piok out a oertain even number of

factors,, either none or all or any intermediate number, and

associate them together in pairs. We replace each pair of factors

A, (x), A v(y) by S,-,A DF(x - y) and multiply the nsult by the

remaining factors of the T-produot arranged in a normal order. For

instance, In the T-produot TI A, (x) A ,(xe) A,% (x3) A r (x4

the possible results for such factor-pairings are given below:

W~ (, -) N A.% (.) A AvX4)] NL.)3,

W iok has then shown that a given T-produot is equal to the sum

of the results of all such factor pairings, i.e., for the example

given, the T-product Is equal to the sum of all the expreasions

in the above table.

In order to show that Iq. (21) Is equivalent to these rul'

we need merely to expand e In a power series. The first term

in the expansion is Just unity and henoe we simply arrange a-l

of the factors AA (x) appearing In S In a normal order: for this

fLrst term we make no faotor-pairings. The next term in the ex.

pansion Is Just A . Because of the nature of the functional

derivatives# the net effect of operating with It on S is to pick

out, in all possible ways, two factors A, (x) and A v, (y) and Insert
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-11 -

in their plaoe 6SA1v DF(x y). Upon rearranging the remaining

faotors In a nor-mal order, as the equation tells us to do, we

obtain the ume of all the results of x single tactor-pairings

mentioned above, In a similar manner we sue that the third term

In the earanslon will give us the sum of the results obtained by

making 'tl possPble pairings Involving four factors AkA(x). and

so on. The faotrials compensate for the fact that In the nth

t ,ra of the expansion each partioular pairing ooours n! times.



1 1 1 . T I .HE QA ' +:, ,, : " ,'fe;, ~ b G Z

In dealing with Eq. (2.1) it Is often Convenient to omploy

the so-called Feynman graphs. The Poynman graph for a particular

Serm In the expansion of the right hand side of Jkq. (21) oan be
drawn as follows: For every factor DF(z 1 - xi') a dotted (photon)

line Is drawn connecting the points x, and x2 ; for every factor

8F (xJ - xI') a directed (electron, polstron) line Is drawn from

xt to xj0  for the factors ' ,, (xk). VAr4 (xk') directed lines

are drawn leading out from xk to the edge of She diagram, and in

from the edge of the diagram to xk'; for every factor AA(x.) a

line Is drawn Connecting the edge of the diagram with 22 . As

sometimes happens, graphs corresponding to two different terms

In the expansion of Eq. (22) differ from each other by only one

or more self-energy parts. In Fig. (1) we hae an example of ouch

a situation. Here the single line connecting the points x and x'

In one graph Is replaced, In the other graph, by a subgrsph which

Is unconnected to the rest of the diaram except by tvo lines

running from It to x and x'. Oraphs which contain self-energy

portions are termed *reduoible* graphs and always correspond to

some particular'firoduoibleN or OprW(tilve' graph. A particular

line In a primitive graph, which has as Its counterpart in the

assooiated reducible graph, a self.-energy subgraph, will be do.

noted as a ;k-line. Dyson has shown 3 that the sum of all of the

term In 9q. (C'%) which correspond to a given primitive graph,

plus all of Its associated reducible graphs, can be reduced to a

single tezu to be asoelaoted with %be primitive graph. This term

Is obtained In the following manner: In the term associated with
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Scattering of electron by electron in 2nd and 4th orders. The photon
is a .\-line



the primitive graph we replace each factor OF. s (x - x') or DF(x - x)

as the Case n.- be, which corresponds to a A -line by the now

factors Grd (x x')s 9Av(x x1) respeotively. substitutions

must also be w.de tor external X -lines but for our purposes we

need not consider th. These new faotors are given by

and

Y.~,CJ() <7A~C~~xA>S22 (~3)

where the subscri t o Indicates that we are to take the vacuum

expectation value of the quantity appearing between the brackets

and where S Is defined through Eq. (I. ), Sva Is just the

vacuum expectation value of the 8-matrix.

In Mile section we shall derive a closed-form expression for

0 ( (x, x') in terms of 3vae, the vacuum expectation value of the

S.matrix and at the same time derive the differential equation

satisfied by G. As we shall see, this equation will be Identical

with the one given by Schwinger for his one electron Green's

function and hence we will be able to conclude that Schvlnger' s

0 Is Identical to the one defined In iq. (27). With this fact In

minds ve can also Call our G the one electron Green's tftol-tion.

Zn order to Investigate the properties of o lot us apply the

results of Eq. (2t) to Sq. (22), We have then that

K.x <N~e e (K'.J> %(2.-
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In the Investigation of suob quantities as appear In the right-

hand side of Eq. (24) It Is convenient to know the oommutation

properties ofE- with respect to V. (x) and 1 (x'). By combining

the results of Eqs. (17r, b; 19c., b ) we obtain directly that

and

Let us nov use Eq. (25b) to Interchange the positions of e and

6j(x')Y/ (x) In Fq. (24). The net effect of this Interchange Is

simply that

because of the form of !- * we also have that

/#7 5a_ r - ,AN e8J~

Direct substitution of Eq. (a) into Eq. (2.6) then yields

X~ 'I) S S(x -x)') I d4IFAo VA

Thus we see that the one-eleotron Green s-funotion can be ex-

pressed entirely In terms of the single quantity S.a.



At this point a word should be said concernine %a*. In Eq.

(27) we have treated B... as though it were a functional of SF (x).

Actually, since BF is a opecified function of Its arguments, Sva o

Is Just a number. Strictly speaking then, the functional derivative

ot 8vao with respect to SF(x) hao no meaning. However, we can

give it meaning if we oonsider SF(x), and also DF(x), to be arbl-

trary functions of their arguments. It is only after we carry

out the preoscribed operations on Svac that they assume their

actual functional dependence.

Although we have obtained an expression for the one-electron

Green's-funotion, In terms of Bv,, it is sometimes convenient

to know the differential equation satisfied by G A . We can derive

this equation by again making use of L.. (A4). It will prove

convenient however,, to interhange the order of 3.i and ,KC ) and

write

X) <(N [6 (er T (K9

Lot us now commute e through 3~ .Refering to Eq. (267a)g

we see that the result is

(The term which contains the factor () standing to the left of

vanishes since we are taking the vacuum expectation value of
the entire expression.) Now, since the functional derivative

S (d) eosmutes with e , an perform the Indicated dit-

ferentlation In Eq. (29) and so obtain
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( = 54 & - ')-f&j SO.1 (N ie e4e

Let us now make use of the fact that

-iA, (V),

to rewrite Eq. (30) In the for

Nov substitute the result of Eq. (18) into the bracketed part of

1. (31 ). =nS obtain

.#ftzd~ S" (Azj

wh1ch becomes, after a slight rearrangement of teas

, (x .' , ,r ,X4)G.1S r(,x) nS1A

-'ej'4 5 4"'F A F J,41

7. 4A ~dIn SVCF( A 9AEa

This result can then be expressed In terms of Gao= as

7'"P(KX" X) 2 _X,)± 4

In order to remain as close to ohvInger s notation as possible

we shall Introduce at this point a quantity <A.. (x) defined by



In terms of (A4q -:i % - then becomes

G60 Nx' X .(') ) ~fd4 S4 jg (4f, X) ~(~ >

Ar

f a#* 'r A$'JAI C ) (4

Finally, by applying the differential operator L ro to both sides

of Eq. (34) ve obtain, as the differential equation satisfied by

G %e

1. JA (3A)

Upon oomparing this equation for 0 o with the one given by Sohvinger,

ye see that they are Identical and hence we are justified in equat-

Ing our Green' s-function with that Introduced by Schwinger.

We shall conclude this section with a brief discussion of the

so-called "mass* operator Introduced by Schiv2nger. Schwinger

has assumed that the functional derivative appearing In Eq. (SS)

can be rpresented by an Integral operator, I.e., that

(r f-9 66-0~~k (x('

The mass operator M4 . (x,) Is then defined thru. the equation

As was ntlioned above, Eq. (36) Is an assumption. It am be



-18 -

Justified however, and we shall do so by deriving an expression

for E.j (xY) in terms of 5vac . Let us begin by rewriting Eq. (2.8)

in SobInger's matrix notation. we have that

where K Is an abbreviation for the functional derivative of

In~va with respeot to 5 . Eq. (37) can be solved for 81, giving

S = (+ K

Substitution of this result back into the second term in the right-

band side of Eq. (37) then yields

G - SF*SO/K(I+Sr,)) &

Nov let us compare this equation with Eq. (34), written in matrix

farm and In terms of Z * vie.

USF ie S MG(A ZS (3a)

We see immediately that 2 Is equivalent to

7 -e&"(A)+K FSK) (3a)

From this we can conclude that a 7 does exist and indeed can be

expressed In term of 8vTo , Actually, the lerivation leading to

Eq. (39) rests upon the assumption that (1 + S' X)_0 exists and

is non-singular. However, even if these conditions are not fuliilled

we can still use Eq. (39), at least formally, to express as a

series expansion in S F and X.



III. Phonnua~k~ OF <A# (x>

In Sohwinger's original work on Greenee-funotono, the idea

was put forth that one might eliminate some of the diffioulties

Inherent In the -matrix formalism by treating Eq. (35") as a

basic equation for Gwp . In other words, one need not consider

Its antecedents, but attempt to solve it directly for G4 . In

order to carry out this progran consistently, one then needs an

equation to deterine <A,,(,0> . In this section we shall derive

such an equation, and, although we do not adhere to Schwinger's

program in this paper, we shall find It useful for other purposes.

Froa Eq. (33) we see that

Upon commuting e thro.gh A(x) we obtain

By carrying out the indicated functional differentiation, Eq. (40)

runs to

where

<,j>= <T jM(V )?>. S ()

Sq. (41) can be put Into the form of a differential equation by

operating on It with -ZQ to give

L(A ) - J(TK>. ( <) -J6A(X)(

Futhermore, because of the definition of GOe

e Y0 ,(4
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Eq. () an be put in the form

QD<A.(~ W> J: 10 ?.kX (4 57

Hence we can use Eq. (46) together with Eq. ( tev) to determine both

<AA. ()> and G %( (x~x') 13 ,

Before concluding this section, It will be of some Interest

to consider the particular case where JA (x)= 0. Since originally

J.(z) was introduced Into the theory as a mathematical artifice

to enable us to derive £q. (3-, we see that this is the case with

vhioh we shall have to deal In all final applioationh of the theory.

In oases where differentiation with respect to JI(x) Is Indicated

we must perform the differentiation before we approach the limit

of J (x) going to zero. Consider now whatbappens to G(xxl) in

the limit. In general 0(x~x') Is not an Invariant function of

Its arguments under a translation or the coordinate axis since It

depends upon J*, x). However, In the limit O(x~x') must bt an

Invariant function of i t arguments and hence becomos a function

6 of the coordinate difference x - x'. We can therefore conclude

from sq. (44) that

since each component of J,(x)) is now a number quite indepe:?-

dent of the coordinate system. The only vector having these

properties which Is invariant under Lorentz transformations Is the

null vector.

13 For a discussion of boundary conditions to be used in connection
with solvlng these equations, see ref. I.



Upon refering back to Eiq. (41) we see then that

%Uths case then$ Eq. (38) beomaes simply

whichi Is just the equation given by Dyson for his Green's.

function S"F (Eq. (6.3 ). B..Matrix In Quantum Elsotrodynamlos)
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IV. THL ONS.PHOTON ORLNIS-FUNCTION

In this seotion we shall treat some of the properties of the

one-pheo OreenO' function as given by kq. (23). Aotually, ve

shall follow SoOvinger and define the one-photon Green's,-funotion as

, ...)X <T[A,(x)Av(x)J> ;

- A, (x > <A,,(x,)> (46)

From the reulults of the proceeding section it Is evident that In

the lim1 it -P 0. v (xox' ) Is equivalent to ' (.av (xox ° ). Keep..

Ing In mu'd now the torm of 2 , we see that Eq. (46) Is equivalent

to

- =. n S )

. 9
P.A4 (X . X,) 1(4?)

By taking uso of Eq. (33)* we can then put Eq. (47) Into the form

5M- A9( ~)> (48)

L us now take the derlvative of both sides of Eq. (41). By

ma 'og use of the Identity (46) we so obain
,.c .,(,X')c ,,4,,D'(X-X') *A D'' Dr(X'J) A9< j" {l()(9

rInAMly by opeatng on Sq, (49) with 0 we obtain the tunda

amea equation satisfied by Sv ;
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...Jv(A)9

Let us examine the laot term In the right-hand side of Eq. (5o).

From &q. (44) ve have that

A9 J-,IW) Jj v

Now Eq. (43) tells us that Je (x) Is equal to a term linear in

(A/ (x) plus an additional term. Hen e, by the chain rule of

differentiation, we can rewrite Eq. (V1) as

.4 Zevfi' ~ (AR) -('Avhft>

If then we define a new quantity ,*, (xxl) by the equation

we can put our fundamental equation (So) Into a more symmetrical

form, namely

0 wf N, X' vP X i fd." PAL ( I) S9V(Vx' 05

In the particular case where J O, . (49) becomes In matrix

notation

5A4V Ir 50-v~ DAc.~

From this expression, we see that qcv corresponds to Dyson's DOF

am AJr corresponds to the proper photon-oaf enea Tr .



V. DI CUUSIQAN

In this paper we have demonstrated the equivalence between

the Green's-functions and associated structures such as the mass

ooeravor Introduced by 3chwinger and the modified propagation

functions occuring In the Sematrix theory. In the course of the

demonstration a curious result appeared, namely, that all of the

various quantities Introduced by Schwinger could be expressed In

terms of a single quantity, Sva o . This fact suggests a possible

alternate approach to investigating the properties of the Green's.

functions. Instead of examining each one separately, as is now

done, one z=ght begin by examining the properties of' 5vae, con_

sidered as a functional of SF D, I AND J. . Such a study would

entail, in the first place a knowlcdge of how Svac depends upon

its arewuents. By making use of the results of til paper it Is

possible to derive certain closed form expressions for S vac" Un.

fortunately, these expressions all Involve the Green's-functions

themselves, and hence are of little help at the present in

analyzinu U.... Lven if we did know the exact functional de.

pendence of S .. we would still be very far from our goal. We

would need In addition a mathematical formalism somewhat akin to

analysis as applied to ordinary functions since, as we have seen,

the Green's-functions all involve functional derivatives of S
vao

with respect to its arguments. In this reopect we can but hope

that the mathematicians will become interested in the problem and

develops for us a theory of functional analysis.

There also exists a second pocsibility which appears to be

somewhat more manageable. As we have seen, the Green's-functions



_co

attempt to take into account, in one fell swoop as it were, all

of the virtual processes associated with a given real process.

The one-electron Green's--funotion, for example, takes into

account all of the virtual processes which accompany a free

electron in Its flight through space. One can take the position,

as Sahwinger has done, that since these virtual processes are in

principle not observable they ought not to ap ear In the theory.

In other words, one should work solely with the Green's-functions

which are given In terms of some Integro-differential equation,

and not worry about their antecodents. The chief drawback to

such a scheme is that some of the quantities appearing in the

Integro.-differential equations for the Green's-functLions, such as

the mass operator, are themselves extremely com )l'cated objects

which up to now have been expressible only as power series in the

various propagation functions. An aproach of this type has been

attempted by kdwards with some degree of sucoess 1 4 .

There does exist a third apnzoach, however, lyIng intermediate

between the two approaches outlined above, which we would like

to outline briefly. Consider for a moment the situation in which

an electron is scattered by some external field. Given Its initial

energy and momentum, we wish to know what will be its final

energy and momentum. In attempting to answer this problem from

a theoretical standpoint, one of the first questions which arises

Is how to describe the initial and final states of the electron.

In the present form of the theory, the electron is described

Initially and finally by eigenstatee of the free-field Hamiltonian,

i0 .0 owever, even before It Interacts with the external field,

14
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the electron Is in interaction with its own virtual photon field.

Hence one should, in describing the initial and final states of

the electron, include the effects of these virtual photons. As

we have seen, our Green's-functions include in their description

of the electron Just these virtual fields. It apr.ears reasonable,

therefore, to employ as eigenetates describing the electron, eigenm

states of the operator appearing in the equation for the one-

electron Green's-function. Once one has done this, there exists

the possibility that the matrix elements of the 8-matrix could

then be expressed in some simple manner in terms of these eigen-

states. The main problem facing the theory would then be shifted

to that of calculatine-these eigenstates where one would have a

much better chance of separating out the Infinities which arise in

the present theory.
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